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Abstract

The geometrically nonlinear problem of in-plane pure bending of a toroidal shell of arbitrary cross-section (both
closed and open) is considered. A finite element algorithm for solution of the problem is proposed. The equilibrium
states of the discrete system are determined by an iterative method based on calculation of the coefficients of the first
and second variations of the total potential energy. Nonlinear deformation of cylindrical and toroidal shells of closed
cross-section is considered. As an example of open cross-sectional contour, a solution for the problem of pure bending
of a thin plate is given. The resultant solutions are compared with those of the other authors. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The problem of pure bending of toroidal shells arises in the pipe bend analysis. Historically, Dubyaga
(1909) gave, by suggestion of Prandtl, the earliest analysis of stresses in curved tubes subjected to pure
bending. More careful investigations of stresses and flexibility of thin-walled tubes were carried out by
Karman (1911) and Lorenz (1912), who gave theoretical explanation of the experimental results of Bantlin
(1910) on flexibility of Q-shaped pipelines. In these pioneering studies, the problem was formulated and
approximate solutions within the framework of small elastic displacements were found. In a series of papers
(see e.g. Karl (1943), Beskin (1945), Clark and Reissner (1951), Cheng and Thailer (1970)), the refined
solutions to the linear problem were obtained on the basis of different approaches and stresses and flexi-
bility for wide range of geometrical parameters of curved tubes were studied in detail.

Using the assumptions analogous to those adopted by Karman (1911), Brazier (1927) treated the
problem of nonlinear deformation of long elastic cylindrical tubes under pure bending and found the value
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of the limiting bending moment for which the instability occurs due to the flattening of the cross-section.
Subsequently, Chwalla (1933), Heck (1937), and Konovalov (1940) attempted to refine the value of the
limiting moment and gave results differed considerably from those of Brazier (1927). Reissner (1961) re-
considered the problem and reduced it to a fourth-order system of two nonlinear differential equations,
which was solved by analytical and numerical methods by Reissner and Weinitschke (1963, 1966), Perrone
and Kao (1971), Na and Turski (1974) and Thurston (1965, 1977). The effect of initial ellipticity of cross-
section on stability of cylindrical shells was studied by Spence and Toh (1979).

Nonlinear equations for the finite bending of curved tubes of circular cross-section were proposed by
Reissner (1959). An alternate variant of the equations and their approximate solutions in the form of power
series expansion were given by Axelrad (1960, 1961). An energy based solution was obtained by Kosto-
vetskii (1960). Formulation of the tube bending problem was re-examined by Boyle (1981) from the
standpoint of the geometrically nonlinear theory of shells. A sixth-order system of differential equations
was derived and solved numerically for the case of circular cross-section. Reissner (1981) showed that by
appropriate choice of primary unknowns, the problem can be simplified by reducing to a fourth-order
system, from which the well-known linear equations of curved tubes (see e.g. Clark and Reissner (1951))
and equations of finite pure bending of cylindrical shells (Reissner, 1961) follow as special cases. However,
as far as the authors are aware, neither analytical nor numerical solutions of this system have been given in
the literature so far.

Analysis of the studies dealing with the tube bending problem shows that in most of them tubes of
circular cross-section were considered. The existing analytical solutions are restricted to the case of tubes
with small initial curvature of the axis and do not make it possible to study the finite bending involving
significant flattening of the cross-section. Investigation of nonlinear deformation of tubes, even within the
framework of the pure bending model, is a sufficiently complicated problem, which can be solved effectively
only by numerical methods. It is therefore of interest to develop a numerical algorithm applicable for wide
range of geometrical parameters of tubes and for significant cross-sectional distortion due to bending.

Here we consider a refined numerical algorithm proposed by Kuznetsov and Levyakov (1992) and give
some results for tubes of noncircular cross-sections.

2. Strain relations

We consider a sector of thin-walled toroidal shell bent in the plane of curvature of its axial line with the
end moments M. Let the shape of cross-section (meridian) be defined in the parametric form x; = x;(s),
where s is the arc length and i = 1,2. We assume that the cross-sections which are normal to the axial line
remain plane and normal to the axial line in the process of loading the shell, but can deform in their planes.
The stresses and strains do not change along the shell axis and depend only on the meridional coordinate s.
Arbitrary displacements and rotations are allowed and strains are assumed to be small compared to unity.
Using the above-mentioned assumptions and the Kirchhoff-Love hypotheses, we write the equation of a
shell surface in its initial and deformed state in the vector form

R =Ry + e;(x; +z47), R*=R; + e (x] +z), (1)

where Ry is the radius-vector of the axial line, e; = ¢;(¢) are the unit orthogonal vectors lying in the plane of
the cross-section, ¢ is the arc length of the axial line of the shell, A7 are the direction cosines of the normal
vector to the middle surface of the shell, z is the normal coordinate to the middle surface of the shell, and
the asterisk denotes quantities which refer to the deformed state. Here and henceforth the rule of sum-
mation over repeated indices is employed unless otherwise specified.

Using Eq. (1), we obtain the relations for the strains and the curvature changes of the middle surface of
the shell in meridional and axial directions:
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& =3(x'x — 1), Ky =x,' A" — X0 (2a)

[t

g =A"(e+k'x; —kx)), Kk =A (KA~ k), (2b)

where 4, = 1 + kx; is the Lame parameter, ¢ and k are the strain and curvature of the axial line, respectively,
and the prime denotes derivative with respect to the coordinate s.

3. Energy and equilibrium conditions
The strain energy of the toroidal shell with unit length of the axial line has the form
1
II= 3 /(T,& + Tieg + Myic, + M)A, ds, (3)

where integration is taken over the entire cross-section and 7, T;, M, and M, are the forces and the
bending moments which for the case of an isotropic, linear-elastic body are connected with the strains and
the curvatures changes (2) by the relations
T, = B(e, +ve,), T,=B(e+ve), B=Eh/(1-V), M,=D(k,+vK,),
M, = D(k, +vx,), D = Bh*/12, (4)
in which E is Young’s modulus, v is Poisson’s ratio, and /% is the thickness of the shell.
The total potential energy has the form U = IT + W, where W = —M(k* — k) is the potential of the

external bending moments. Using the stationary condition for the total potential energy 6U = 0, we obtain
the following system of nonlinear equations of equilibrium:

Sxi H — kT, =0,  8xj: V' =0, (5)

e: /T,ds=o, 5k /(T,+M,;:;*)ds=M (6)

and the boundary conditions on the boundaries of the open cross-sectional contour:
&1 =0 or H=0,
;=0 or V=0, (7)
dp*=0 or M,=0.
Here
H=TAx" + (4) " (MAxy) — (43) 7k Mxt'x3,
V =Ty — ()7 (MAx)) + (4) 7k M (x)'),
A7 = ()"~ 14,

¢* = —atan(x}'/x3).

Eq. (6) express conditions of pure bending, namely, the principal vector is zero and the principal moment
is equal to the specified bending moment. These equations can also be considered as boundary conditions at
the loaded ends of the shell which are satisfied in Saint-Venant fashion.

In the case of a closed contour, conditions (7) are to be replaced by the periodicity conditions.
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It is obvious that exact analytical solutions of the boundary-value problems (5)—(7) can be obtained only
in particular cases. To overcome the difficulties arising in direct integration of the above equations, we
resort to a numerical method.

4. Numerical algorithm for solution of the problem

We divide the shell into finite elements having length / in the meridional direction. Assuming that the
elements are small, we derive an approximate version of relations (2). To this end, we introduce the local
coordinate system (o, () with the unit orthogonal vectors e, and e, attached to the element (Fig. 1). The
functions {(«) and {"(«) which describe the shapes of the element in the initial and deformed states are
expanded into Taylor series in the neighborhood of node 1 as follows:

(=302 —al) +O(P), O =10"(? — al) + O(P). (8)

The element coordinates and direction cosines of the normal vector m are written in the form (no
summation over o)

R R NGRSV VT o)

where ¥ are the coordinates of the points on the straight line passing through the element nodes and A7 and
/; are the direction cosines of the vectors e, and e;, respectively, and the comma denotes differentiation with
respect to «. Similarly, for a deformed state, we have

g

Ry
=

0 X,

Fig. 1. Geometry of the finite element.
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= AT, A= O =) [T+ (10)

In view of the element smallness, differentiation with respect to the coordinate s can be replaced by
differentiation with respect to a. Substituting Egs. (9) and (10) into Eq. (2a) and using expansion (8) to
estimate the leading terms, we arrive at the relations (no summation over p and o)

b= M = 1), ke = =W, (11)

which approximate the initial strain relations (2a) with an accuracy up to terms of order O(/?). Here
w = (" — ( is the deflection.
The functions x/, x*, and w are expressed in terms of nodal parameters as follows:

xf = L/X”, XP* = L,x* w = N,-H,—, gi = bk(.xf )un* - Xjk/l;li),

i ij? Jkji
Ly=1+ba, L,=bhbo, by=—0I"" by=1", (12)
Ny = (o =200 + Pa)l2, Ny = (o — la?)]72,
where x;; and 4 (i,j = 1,2) are the ith coordinates and direction cosines of the normal vector at the jth
node of the element, respectively, 0; is the elastic component of the rotation of the normal vector at the ith
node, and L; and N; are the shape functions. Substituting Eq. (12) into Eq. (11) and averaging the functions
x1,x}, A, and A" in Eq. (2b) over the element, we obtain the following finite-element relations for the strains
and curvature changes:

1 * K —
& = E(bibkxﬁxjk - 1)7 Ky = ]Vi,wgh

-1 * % —1 oY/ n (13)
& =A; (e +k'x] —kxy), ke =A7 (KA — kA7),
in which
xp = 5(vn +xn2), xy =5, +x7,),

A=+, AT =50+ )
We introduce the five-component vector of the generalized elastic displacements
uT = ‘ s, 017 927 &5 Kt | (14)

Substituting relations (4) and (13) into Eq. (3) and integrating between the limits 0 and /, we obtain the
strain energy of an element in the form IT = (1/2)u"Ku, where K is the 5 x 5 symmetric stiffness matrix
whose nonzero coefficients are given by the expressions

Ky =BAl, K=Ky, Kpn=DI""[44k(3x; +x12)], Ky =2DAI",
Kys = —vD(1 + kxy1), K3 =Dl '[4+k(xi1 +3x12)],  Kszs = vD(1 + kx1a), Kag = Kyy,
Kss = DA,

One special feature of the given formulation of the problem is that a finite element of the shell contains
the following both nodal and nonnodal unknowns which form the vector of the generalized coordinates q:

T _ * * * * * * *
q =[x}y, X35 @1y Xips Xops @3, & K7, (15)

where ¢ is the angle of rotation of the normal vector at the ith node.
The first and second variations of the strain energy of the element have the form

SIT = g'dq, IT = 5q"H dq,
where

g=uP, P=Ku H=uKW) +Pu (r=1,...,5).
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Here g and H are the gradient and the Hess matrix of the total potential energy and w’ and u/ are the 8 x 5
and 8 x 8 matrices, respectively, which contain the first and second derivatives of the components of the
vector u with respect to the generalized coordinates (15).

Nonzero components of the matrix u’ have the form (no summation over i)

O¢ 00; a0; og, 1

> = b;byxt — =h — = bt ——=_k'4!
S S A
Og » g, .1 ok, 1 ... | oK, e 1
a = At 5 @ = xlAt 5 aq)l* = Ek )"liAt 5 % = )L,liAt 5

where A are the direction cosines of the unit vector tangent to the deformed cross-sectional contour at the
ith node. The matrix u’ is introduced in such a manner that its rth row corresponds to the component ¢, and
its sth column corresponds to the component u;, i.e., (W), = Ou,/0q,.

The subscript at the matrices u; indicates which component of the vector u is differentiated twice.
Nonzero components appearing in matrices u’ are calculated by the formulas (no summation over i)

%e, 0%0; 0%0;
— % —pbb — L= _p N EhahC—
oxjoxy 7 ko g2 ki ox, 07 ki

e 1 R PRI U PPN
oxj, 0k 2717 Op;ok* 2717 2 QT e

To find a deformed state of the shell, we use the arc-length control method (see e.g. Yang and Shich
(1990)) based on the stepwise determination of a solution. For a certain step, the Newton—Raphson system
of equations has the form

H'5¢" + w oM + g1 =0, (16)

where H and g are the gradient and Hess matrix of the finite element assemblage, w is a vector composed of
derivatives 0*W /0q;OM, M is the bending moment which is assumed to be an independent variable, and the
superscript denotes the iteration number. We note that the superscript at w can be omitted, since this vector
has the only one nonzero component equal to 1.

System (16) is supplemented by the control equations

(3q")"8q" + (3M')* = (8s)° fork =1,

T 1 (17)
(5q")" 8q' +dM'dM* =0 fork > 1,
where ds is a specified quantity representing the arc-length measure of an equilibrium path.
Solution of Eq. (16) can be presented as
5q" = SM*u* + v, (18)

where the vectors uf and v* satisfy the systems of equations
H" 'u* +w=0, H 'V + ¢ =0,

Substituting Eq. (18) into Eq. (17) and bearing in mind that g = 0 and v' = 0, we arrive at the formulas for
the load increments

M = :tBs/\/ 1+ (u)'u' fork=1, (19a)

SMF = —(vF)"u'/[1 4+ (u*) '] for k > 1. (19b)
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The sign in Eq. (19a) defines the direction of tracing an equilibrium solution path and at ith step it is chosen
so that the following condition holds:

(8q/)" Sa | + M/ 5M | > 0.

After the quantities 3q* and 3 M* are determined, the new values of the unknowns are calculated by means
of the following formulas (no summation over j):
) = () @) ) = () eos ()" + ()" sin (8

Sk — 8/(71 + (Ss)k7 (k*)k _ (k*)k71 + (Sk*)k, Mk :Mkfl + (SM)/C

The iteration process is continued until the required accuracy of determining unknowns is attained.

To calculate the toroidal shells, one needs as initial data the values of the coordinates and the direction
cosines of the normal vector at the nodes of the cross-section under consideration.

It should be noted that setting the curvature k equal to zero, we arrive at the case of cylindrical shell,
which can also be studied by the proposed algorithm.

5. Numerical results
5.1. Bending of a thin strip

The first example considered is the problem of flexure of a broad very thin strip. This problem, which
admits an exact analytical solution obtained by Lamb (1891), is chosen to demonstrate application of the
above algorithm to the case of an open cross-section and also to study the accuracy and convergence of
numerical solutions obtained. Calculations were carried out for the case of v=0.3 and 2a/h = 100, 2a
being the width of the strip. Deflection curves of the strip cross-section are shown in Fig. 2 for various

0.15

0.10

wih

0.05

0.00 _
w

_005 1 I Il ! J
0.0 0.1 0.2 03 0.4 0.5

X, /a

Fig. 2. Deflection curves for a thin strip in pure bending.
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Table 1

Convergence study for the problem of strip flexure
o w/h

N=2 N=4 N =38 N=12

1 0.08381 0.08168 0.08113 0.08103
2 0.13620 0.12600 0.12362 0.12318
3 0.15568 0.13796 0.13420 0.13352
4 0.15570 0.13504 0.13101 0.13030
8 0.11478 0.10650 0.10545 0.10527
12 0.08392 0.09220 0.09379 0.09404
16 0.06517 0.08663 0.08965 0.09009
20 0.05303 0.08497 0.08854 0.08901
40 0.02727 0.09124 0.09083 0.09075

values of the curvature parameter o« = \/3(1 — v?)k*a? /h. The results illustrating the convergence of nu-

merical solution are given in Table 1, where the values of deflection w of the strip edge as a function of the
curvature parameter are recorded. It is seen that numerical solution converges rapidly as the number of
finite elements /V increases. For large values of o, the deflection approaches the value w = 0.090754, which
agrees with the analytical solution w = vi/1/12(1 — v?) = 0.090784A.

5.2. Bending of tubes of circular cross-section

We consider the problem of bending of tubes (toroidal shells) of circular cross-section, characterized by
various values of the curvature parameter u = +/12(1 — v2)kr? /h with v = 0.3 and r/h = 100, where r is the
radius of cross-section. Fig. 3 shows the dependencies between the dimensionless parameters of bending

12 r
08}
m 2
04l 5
10
100
00 L 1 " | "
0 2 4 6 8 10

a

Fig. 3. Dimensionless moment-curvature change relations for tubes of circular cross-section.
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Table 2
Critical moment and curvature change parameters for cylindrical shell
Solutions compared me o
Brazier (1927) 1.088 1.633
Chwalla (1933) 1.252 2.664
Konovalov (1940) 1.345 2.532
Reissner and Weinitschke (1966) 1.06 1.66
Perrone and Kao (1971) 1.0568 1.65
Na and Turski (1974) 1.0404 1.650
Thurston (1977) 1.0570968 1.6493953
Present analysis 1.0604 1.66
Table 3
Critical bending moment for curved tubes
A me
Boyle (1981) Present analysis
0.5 0.36 0.351
1 0.47 0.459
2 0.63 0.628
5 0.84 0.841
10 0.93 0.941
moment m = \/12(1 —v2)Mr* /hEI (I = nr’h is the moment of inertia of the cross-section) and curvature

change of the axial line o = \/12(1 —v2)(k* — k)r*/h. It is seen that critical bending moment rapidly de-
creases with increasing u. Characteristically, the limiting point for large values of u > 10 is not very pro-
nounced.

The critical parameters m. and . calculated for the cylindrical shell (¢ = 0) using the above algorithm
are given in Table 2 and compared with those obtained by the other authors. Our results are very close to
the values of m, and «, determined by solving the nonlinear equations of Reissner (1961) with the use of
different numerical techniques. It is interesting to note that the simplest solution given by Brazier (1927)
provides good accuracy in describing nonlinear behaviour of the tube up to the loss of stability. Solutions of
Chwalla (1933) and Konovalov (1940) significantly overestimate the critical moment and curvature change.

Table 3 lists the values of the critical bending moment for the curved tubes characterized by the pa-
rameter A = 1/12(1 — v?)/p. It should be noted that the Boyle’s results (1981) that are given in the table are
approximate since they were taken from the graphs. Nevertheless, good correspondence between the nu-
merical solutions compared is observed.

In Figs. 4 and 5, we show on a real scale the forms of flattened cross-sections for u =5 and u = 100,
respectively. For large values of u, cross-sections flatten mainly due to deformation in the neighbourhood
of zero Gaussian curvature of the shell. The remaining part of the section is almost undeformed and stress
free.

5.3. Bending of tubes of square cross-section

A linear solution to the problem of pure bending of curved thin-walled tubes of rectangular cross-section
was given by Timoshenko (1923). However, as far as the authors are aware, this problem has not been
treated in geometrically nonlinear formulation.
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Fig. 4. Flattened circular cross-sections for yu = 5.

15

X2 [r

x,/r

Fig. 5. Flattened circular cross-sections for u = 100.

We confine our analysis to a square cross-section with side a. The centroidal moment of inertia of the
cross-section is I = (2/3)a’h. Fig. 6 shows the parameter of bending moment m = /12(1 —v2)Ma® /hEI
versus curvature change parameter o = /12(1 —v2)(k* — k)a®/h for various values of the tube parameter
w=+/12(1 — v2)ka®/h. Results were obtained for a/h = 100, v = 0.3, and division of the half of the cross-
section into 32 equal finite elements. Deformed cross-sections for y = 100 are shown in Fig. 7. One can see
that in bending of the tubes characterized by large values of the parameter p, the cross-section flattens due
to bending of the sides that are parallel to the plane of bending; the other two sides remain almost un-
deformed except for small regions in the neighborhood of the corner points.

6. Conclusions

A geometrically nonlinear formulation of the problem of pure bending of toroidal shells has been re-
examined. A numerical algorithm has been developed for determining deformations and stresses of toroidal
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Fig. 6. Dimensionless moment-curvature change relations for tubes of square cross-section.

10~
40
30
20
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%Maﬂ
00k : ' '
05 0.0 0.5
X, /a

Fig. 7. Flattened square cross-section for x = 100.

shells in the field of large elastic displacements. Numerical results have been presented for shells of circular
and noncircular cross-sections and a broad very thin plate and compared with available solutions. In
particular, the value of critical bending moment for cylindrical tubes has been refined and found to be very
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close to that based on the Reissner’s equations (1961). The algorithm is effective, provides high accuracy of
calculations, and is applicable for linear and nonlinear analysis of elastic shells.
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